Spline Discrete Differential Forms and a New Finite Difference Discrete Hodge Operator

نویسندگان

  • Aurore Back
  • Eric Sonnendrücker
چکیده

We construct a new set of discrete differential forms based on B-splines of arbitrary degree as well as an associated Hodge operator. The theory is first developed in 1D and then extended to multi-dimension using tensor products. We link our discrete differential forms with the theory of chains and cochains. The spline discrete differential forms are then applied to the numerical solution of Maxwell’s equations. AMS Subject Classification. — Please, give AMS classification codes —. 30 November 2012.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite Element Hodge for Spline Discrete Differential Forms. Application to the Vlasov-Poisson Equations

The notion of B-spline based discrete differential forms is recalled and along with a Finite Element Hodge operator, it is used to design new numerical methods for solving the Vlasov-Poisson equations. Answer’s to the referees’ questions Aurore Back and Eric Sonnendrücker April 12, 2013 We thank the referees for the careful reading of our manuscript and for many interesting comments that helped...

متن کامل

Principles of Mimetic Discretizations of Differential Operators

Compatible discretizations transform partial differential equations to discrete algebraic problems that mimic fundamental properties of the continuum equations. We provide a common framework for mimetic discretizations using algebraic topology to guide our analysis. The framework and all attendant discrete structures are put together by using two basic mappings between differential forms and co...

متن کامل

Finite difference method for solving partial integro-differential equations

In this paper, we have introduced a new method for solving a class of the partial integro-differential equation with the singular kernel by using the finite difference method. First, we employing an algorithm for solving the problem based on the Crank-Nicholson scheme with given conditions. Furthermore, we discrete the singular integral for solving of the problem. Also, the numerical results ob...

متن کامل

Discrete Hodge operators

Many linear boundary value problems arising in computational physics can be formulated in the calculus of differential forms. Discrete differential forms provide a natural and canonical approach to their discretization. However, much freedom remains concerning the choice of discrete Hodge operators, that is, discrete analogues of constitutive laws. A generic discrete Hodge operator is introduce...

متن کامل

Analysis of Compatible Discrete Operator Schemes - for Elliptic Problems on Polyhedral Meshes

Compatible schemes localize degrees of freedom according to the physical nature of the underlying fields and operate a clear distinction between topological laws and closure relations. For elliptic problems, the cornerstone in the scheme design is the discrete Hodge operator linking gradients to fluxes by means of a dual mesh, while a structure-preserving discretization is employed for the grad...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013